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Introduction and background

>

>

We present a VAE method with a latent space subject to an intrinsic geometric
flow, solved using physics-informed learning, among the latent manifold.

As areminder, a VAE is an autoencoder framework, with and decoder
neural networks, with an intermediary latent stage. The latent stage is typically
regularized with a Gaussian prior, and can be used for generative modeling.

latent stage

encoder
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Motivation

> We present a VAE method with a latent space subject to an intrinsic geometric
flow, solved using physics-informed learning, among the latent manifold.

> Geometric quality in learning tasks has been characterized by ambient
improvement in this process in areas such as:

o Sampling quality ( )

o Representation capacity (learn more complicated data relations better)
( )

o Identifiability / interpretability ( )

o Adversarial robustness (this work)
> Manifolds in latent spaces have been shown to help learning and robustness (
).
> Can we duplicate this effect of manifold regularization with VAEs but in the setting
where the manifold evolves continuously?
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VAE latent geometry

> QOur arguments are less tailored
so that geometry itself in latent
spaces help learning.

> Chadebec et al. have
demonstrated VAEs can
naturally develop structure.

> QOur arguments are more
tailored so that we can control
the latent geometries to have
“sufficiently nice” properties
which help learning.

A swiss roll seems to naturally form in the latent
means of this data. An intrinsically low manifold is
never fully learned due to the variance of the VAE.
Figure presented in
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VAE latent geometry

Our method — latent geometry is

What naturally develops in training significantly more controlled:
with our setup:

t=0

= / :

t~0.33 t~ 0.66 t=1

Dissonant, less-structured representations Highly controlled, consistent representations
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Setup

Initial data Ambient solution

> PDE data discretized is mapped to a low-dimensional space (intrinsic
dimension) where the VAE prior distribution lies.
> This latent stage is mapped to a subsequent latent stage (with
) where the manifold exists.
> The manifold point is mapped to PDE data (discretization length) at time ¢.
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The ELBO for parameterized latent spaces

As in typical in VAEs, our loss is motivated by maximizing log-likelihood log p(z:). We will denote
2y ~ P(M;) a sampled point from a distribution on the time-evolving manifold. Notice

Etl‘)gp(xt)z/ 10g/ pgd‘/tdt:]Et,ztlogM
[0,7] M, 4 q(2¢,t|xo)

Using the change of variables p(z;) = p(u) \/ det((J-1)TJ-1) (the Jacobian is not square), we get

o p(x4|2¢)p(24)
q\/det((J-1)TJ-1)
LONCCRIRE
q(ulzo)/det((J-1)TT-1)
x —E; ,, log p(z¢|2: = encoder(u, t)) + Dir(q(ulzo) || p(u))

p
Et,zt log 6 = ]Et,Zt lo

=y ., | log p(x¢]2:) + log

We have noticed the relation between z and u is deterministic. This is our primary loss.
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Our geometric flow PDE on the Riemannian metric
We consider a PDE (ODE) on the Riemannian metric
Org(u,t) = —A(u, )T A(u, t)g(u, t) + a(—g(u, t) + L(u))

which we will enforce in a loss, which we will develop in a moment. Here, g and A are neural
networks. ¥ is a fixed Riemannian metric baseline, such as that of the sphere.

This PDE is linear, efficient to compute because it only requires one time derivative, solved with
automatic differentiation.

Theorem 1. The geometric flow of equation 22 is a gradient flow with respect to the Euclidean metric and the
functional

Fio) = [ 5(A+aDg.g)r - a(2.g)rd

We will assume nondegeneracy of the metric. This Theorem ensures the metric is nondegenerate,
which helps the manifold learn large Lebesgue measure.
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Small manifold is less robust
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Empirical evidence that our flow (left) outperforms a flow of small Lebesgue measure. The
reason a Riemannian metric with smaller values forms on the (right) is because smaller values

are easier to satisfy the loss function. We provide evidence the learned metric is small on the next
slide.

Nondegeneracy is never exactly learned because the decoder will learn distinct latent points for
distinct ambient points.
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Small metric is learned naturally in training

The Riemannian metric without the steady
term is near degenerate. The diagonal of our
metric is near zero without this steady term!
The off-diagonal follows by Cauchy-Schwarz
for an induced metric.
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Our method’s robustness

Observed input
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We present evidence that our method promotes adversarial robustness. Our method
(orange) achieves lower L1 error across training iteration versus a vanilla VAE (green).
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Training

We present our training loss function:

Traditional VAE loss
B¢ U0,1), u~i(-|zo) [~ log P(2t|2t)] + BDkL(4(ulzo)|[p(u)) Regularization term
Our derived r?lrodiﬁed ELBO /
- EtNU[O o, e e [7geo fow ||(Bs + Mgy (u, t))go, (u, t) + o (g0, (u, t) )H ]

Physics-informed geometrlc flow regularization

+ IEiENU[O,T],uwzj(-|zg) |:'7metric ||geg (U, t) — JTJ”i.,]

N

s
Matching induced metric with simulated Riemannian metric
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Results
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Burger’s equation

VAE

| t=0

t=0.25

t=0.5

t=0.75

t=1

In-distribution

Out-of-distribution 1
Out-of-distribution 2
Out-of-distribution 3
Out-of-distribution 4

3.90e—2+£2.26e—2
2.6le—1+1.73e—1
2.76e—1+£2.22e—1
1.19e0 % 9.14e—1
3.05e—1+3.14e—1

1.56e—211.50e—2
2.8le—143.31e—1
2.99e—143.73e—1
1.20e0 + 1.49e0
3.38e—1£6.65e—1

1.59e—211.74e—2
3.32e—1+4.91e—1
3.22e—1+4.86e—1
1.12e0 =+ 1.46€0
4.25e—1%1.25e—1

1.80e—2+2.00e—2
3.42e—1£5.61e—1
3.05e—1+4.50e—1
1.00e0 =+ 1.22e0
4.64e—1%1.57e—1

3.10e—2+3.49e—2
3.35e—1£5.78e—1
2.85e—1+4.00e—1
9.07e—1 + 1.04e0
4.62e—1 + 1.66e0

VAE, extended

| t=0

t=0.25

t=0.5

t=0.75

t=1

In-distribution

Out-of-distribution 1
Out-of-distribution 2
Out-of-distribution 3
Out-of-distribution 4

8.05e—2+5.41e—2
2.28e—1+1.87e—1
2.03e—1+£1.65e—1
7.92e—1+7.32e—1
2.89e—1+3.15e—1

2.83e—212.92e—2
2.37e—11+2.76e—1
2.13e—14+2.39e—1
8.84e—1 £ 1.06e0
2.99e—146.74e—1

2.31e—243.19e—2
2.4le—143.14e—1
2.18e—1£2.92e—1
8.43e—1 £ 1.14e0
3.62e—1 £ 1.23e0

2.55e—2+4.64e—2
2.24e—1+£3.02e—1
2.03e—1£2.77e—1
7.40e—1 =+ 1.00e0
3.94e—1 £ 1.52e0

3.65e—2+5.83e—2
2.08e—1+2.88e—1
1.89e—142.52e—1
6.53e—1+£8.59¢—1
4.03e—1 + 1.61e0

VAE-DLM unweighted (ours)

| t=0

t=0.25

t=0.5

t=0.75

t=1

In-distribution

Out-of-distribution 1
Out-of-distribution 2
Out-of-distribution 3
Out-of-distribution 4

8.62e—215.71e—2
2.19e—1+1.95e—1
1.98e—1+1.49e—1
7.06e—1+£5.54e—1
2.54e—1+2.59e—1

3.00e—2+2.97e—2
1.77e—1+2.08e—1
1.76e—1+1.99e—1
6.51e—1+7.37e—1
2.40e—1+5.36e—1

3.04e—215.11e—2
1.71e—142.39e—1
1.63e—1+2.42e—1
5.38e—1+6.95e—1
2.68e—119.36e—1

2.94e—2+5.40e—2
1.65e—1+2.48e—1
1.48e—1+2.32e—1
4.44e—1+5.47e—1
2.91le—1 £ 1.14e0

4.63e—2+8.23e—2
1.68e—1+2.59e—1
1.42e—1+2.24e—1
4.23e—1+4.03e—1
3.10e—1 + 1.25e0

VAE-DLM weighted (ours)

| t=0

t=0.25

t=0.5

t=0.75

t=1

In-distribution

Out-of-distribution 1
Out-of-distribution 2
Out-of-distribution 3
Out-of-distribution 4

8.74e—2+5.77e—2
2.25e—1+1.53e—1
2.0le—1+£1.35e—1
6.42e—1+5.60e—1
2.52e—1+2.38e—1

2.92e—212.54e—2
1.91e—1+2.31e—1
1.8le—141.92e—1
6.62e—11+7.59e—1
2.3le—1+4.69e—1

3.13e—214.80e—2
1.83e—1+£2.58e—1
1.78e—1+2.40e—1
5.66e—116.67e—1
2.58e—1+8.29e—1

2.82e—213.95e—2
1.84e—142.70e—1
1.71e—1£2.31e—1
5.07e—1+5.81e—1
2.72e—149.98e—1

5.16e—2+1.08e—1
1.97e—142.88e—1
1.70e—1+2.20e—1
5.00e—1+£5.59e—1
2.86e—1 + 1.07e0




Results
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Generative modeling is also possible with manifold

regularization
I = .
Here, we sample the prior in local coordinates, ‘ S - A
which is subsequently mapped to the manifold. The 1 I8 ===
prior will roughly match a Gaussian due to the KL . - -
divergence in the loss. : . , .
- T
‘I:' ].IE 1 IEE
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Thanks for listening! Questions?
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