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Introduction and background
➢ We present a VAE method with a latent space subject to an intrinsic geometric 

flow, solved using physics-informed learning, among the latent manifold.
➢ As a reminder, a VAE is an autoencoder framework, with encoder and decoder 

neural networks, with an intermediary latent stage. The latent stage is typically 
regularized with a Gaussian prior, and can be used for generative modeling.
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Motivation
➢ We present a VAE method with a latent space subject to an intrinsic geometric 

flow, solved using physics-informed learning, among the latent manifold.
➢ Geometric quality in learning tasks has been characterized by ambient 

improvement in this process in areas such as:
○ Sampling quality (Chadebec et al.)
○ Representation capacity (learn more complicated data relations better) 

(Nickel et al.)
○ Identifiability / interpretability (Arvanitidis et al.)
○ Adversarial robustness (this work)

➢ Manifolds in latent spaces have been shown to help learning and robustness (Lopez 
et al.).

➢ Can we duplicate this effect of manifold regularization with VAEs but in the setting 
where the manifold evolves continuously?
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VAE latent geometry
➢ Our arguments are less tailored 

so  that geometry itself in latent 
spaces help learning.

➢ Chadebec et al. have 
demonstrated VAEs can 
naturally develop structure.

➢ Our arguments are more 
tailored so that we can control 
the latent geometries to have 
“sufficiently nice” properties 
which help learning. A swiss roll seems to naturally form in the latent 

means of this data. An intrinsically low manifold is 
never fully learned due to the variance of the VAE. 
Figure presented in Chadebec et al., A Geometric 
Perspective on Variational Autoencoders
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VAE latent geometry

What naturally develops in training 
with our setup:

Our method — latent geometry is 
significantly more controlled:

Dissonant, less-structured representations Highly controlled, consistent representations
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Setup

➢ PDE data discretized is mapped to a low-dimensional space (intrinsic 
dimension) where the VAE prior distribution lies.

➢ This latent stage is mapped to a subsequent latent stage (with extrinsic 
dimension) where the manifold exists.

➢ The manifold point is mapped to PDE data (discretization length) at time t.
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The ELBO for parameterized latent spaces
As in typical in VAEs, our loss is motivated by maximizing log-likelihood                . We will denote                              
                      a sampled point from a distribution on the time-evolving manifold. Notice
     
                                                                                                                                      .

Using the change of variables                                                 (the Jacobian is not square), we get

We have noticed the relation between z and u is deterministic. This is our primary loss.



We consider a PDE (ODE) on the Riemannian metric

which we will enforce in a loss, which we will develop in a moment. Here, g and A are neural 
networks.      is a fixed Riemannian metric baseline, such as that of the sphere. 

This PDE is linear, efficient to compute because it only requires one time derivative, solved with 
automatic differentiation.

We will assume nondegeneracy of the metric. This Theorem ensures the metric is nondegenerate, 
which helps the manifold learn large Lebesgue measure.
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Our geometric flow PDE on the Riemannian metric



Empirical evidence that our flow (left) outperforms a flow of small Lebesgue measure. The 
reason a Riemannian metric with smaller values forms on the (right) is because smaller values 
are easier to satisfy the loss function. We provide evidence the learned metric is small on the next 
slide.

Nondegeneracy is never exactly learned because the decoder will learn distinct latent points for 
distinct ambient points.
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Small manifold is less robust



The Riemannian metric without the steady 
term is near degenerate. The diagonal of our 
metric is near zero without this steady term! 
The off-diagonal follows by Cauchy-Schwarz 
for an induced metric.
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Small metric is learned naturally in training



We present evidence that our method promotes adversarial robustness. Our method 
(orange) achieves lower L1 error across training iteration versus a vanilla VAE (green).
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Our method’s robustness



We present our training loss function:
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Training

Regularization term

Traditional VAE loss
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Results
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Results
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Generative modeling is also possible with manifold 
regularization

Here, we sample the prior in local coordinates, 
which is subsequently mapped to the manifold. The 
prior will roughly match a Gaussian due to the KL 
divergence in the loss.
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Thanks for listening! Questions?


