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Abstract

Diffusion normalizing flow is a deep generative modeling method in which 
information, particularly images, is diffused into noise in a reversible process. The 
noise may be propagated back so that the original image is reconstructed. Such a 
noise-inducing process is done by forward and backward neural stochastic 
differential equations.

Diffusion normalizing flow acts as a combination between diffusion models, i.e. 
injecting noise into data, and normalizing flow, i.e. a compositional sequence of 
invertible functions.

This method demonstrates competitive performance, and is especially strong for 
images with sharp boundaries.
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A class of deep generative modeling is done by injecting noise 
into images with a stochastic differential equation. A novel 
mathematical result implies this noise can be reversed to produce 
the image. These generative models can be classified as diffusion 
models.

This paper presents DiffFlow (diffusion normalizing flow), in which 
noise is added with a discretized sequence through trainable 
stochastic differential equations. It can be shown that normalizing 
flow is a special case of DiffFlow.
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A normalizing flow is a solution to the differential equation

that evolves according to the equation

(proof discussed later). Such an evolution can be made discrete, in which such a discrete 
trajectory is described by the equations

                                                                                                           

Where we denote such a discrete trajectory as                                        . The flow follows the 
composition of functions                                               . Furthermore, the following equation is 
obeyed, using the change-of-variables formula and following the path:



Background
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A diffusion model is a stochastic differential equation (SDE) of the form

where                                is a drift function (frequently, but not necessarily, linear), and
                     is a diffusion function (frequently constant). 

It is a known result such an SDE has a backward process

In particular, we can perform the forward SDE on a segment of data, i.e., an image, in a 
noise-injecting process. The noise can be reversed with such a backwards SDE to restore the 
original image. This occurs when the neural network               coincides with score function (log 
density gradient w.r.t. space) of the forward probability flow.

We write the trajectory distributions as



Diffusion normalizing flow
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We present diffusion normalizing flow (DiffFlow). This is essentially a diffusion model in which 
the drift term is learnable as a neural network. The forward SDE becomes

with a corresponding backwards SDE

It is the goal of the final result at zero time of the backwards process to match the true 
distribution in the forward process.

To train DiffFlow, we minimize the KL divergence over the trajectory space    .



Diffusion normalizing flow
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We use the following numerical scheme as a means of implementation:

for Gaussian noise                             . Neural networks are evaluated at discrete time locations 
given by             .

It is clear, using log properties and the forward and backward trajectory distributions, the KL loss 
to be minimized is given by
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Furthermore, it can be shown the backward Gaussian noise satisfies

In addition, we will show later that the final loss function in the training algorithm is given by

                                                                                                                                                   . 



Training

University of Illinois Urbana-Champaign - Department of Statistics



Theorem

University of Illinois Urbana-Champaign - Department of Statistics



Results

University of Illinois Urbana-Champaign - Department of Statistics



Results

University of Illinois Urbana-Champaign - Department of Statistics



Results
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DiffFlow is particularly strong for capturing images with 
sharp boundaries.



First, we prove                                . 

The proof follows from the Neural Ordinary Differential Equations (Chen., R.T.Q., et al.) paper.

Proofs and derivations
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Proof: We begin by denoting the solution over an infinitesimal change in time through a 
transformation
                                                                                            .
Furthermore, we assume sufficiently nice conditions. Using the definition of the derivative, and the 
change of variables property (multiplying by Jacobian determinant)
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It follows using the derivative of the determinant
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and using Taylor expansions,
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Next, we derive the DiffFlow loss function.

The KL divergence between forward and backward trajectories is given by

where the first line is given by the conditional probability property, and the second by definition of KL 
divergence and log properties.



Proofs and derivations
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Furthermore,

which follows immediately using the trajectory distributions (discussed previously) and conditional 
probability property, and 

(proof omitted), our loss function becomes 



Proofs and derivations
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The first and third terms are constant, so we aim to minimize empirically

Expectation of the final term is constant, reducing the loss further to

Setting the discrete processes equal to each other at a particular index, we have



Marginal equivalent SDEs
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We provide a marginal equivalent SDE to the primary backwards SDE. We show

is marginally equivalent to the DiffFlow SDE

According to the Fokker-Planck equation, using the corresponding diffusion and drift functions, we 
have

                                                                                                                                                     

for the DiffFlow SDE.



Marginal equivalent SDEs
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Considering the second SDE again,

and denote

Again, with the FKP equation, the distribution evolves according to

Observe the fact

                                                                                                                                      .
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We have

Since the score corresponds to the gradient, we have the result.

                                                                                                                                            



References

University of Illinois Urbana-Champaign - Department of Statistics

Zhang, Q., and Chen, Y. Diffusion normalizing flow. https://arxiv.org/abs/2110.07579.

Chen., R.T.Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. Neural ordinary differential 
equations. https://arxiv.org/abs/1806.07366.

                                                                                                                                            

https://arxiv.org/abs/2110.07579
https://arxiv.org/abs/1806.07366

