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Gﬁusion normalizing flow is a deep generative modeling method in which \
information, particularly images, is diffused into noise in a reversible process. The
noise may be propagated back so that the original image is reconstructed. Such a
noise-inducing process is done by forward and backward neural stochastic
differential equations.

Diffusion normalizing flow acts as a combination between diffusion models, i.e.
injecting noise into data, and normalizing flow, i.e. a compositional sequence of
invertible functions.

This method demonstrates competitive performance, and is especially strong for
images with sharp boundaries.
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6 class of deep generative modeling is done by injecting noise \
into images with a stochastic differential equation. A novel
mathematical result implies this noise can be reversed to produce
theoilrr}age. These generative models can be classified as diffusion
models.

This paper presents DiffFlow (diffusion normalizing flow), in which
noise is added with a discretized sequence through trainable
stochastic differential equations. It can be shown that normalizing
flow is a special case of DiffFlow. /
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A normalizing flow is a solution to the differential equation

x = f(x,t,6),
that evolves according to the equation
dlog p(x(t)) tr( of
ot N ox

(proof discussed later). Such an evolution can be made discrete, in which such a discrete
trajectory is described by the equations

x; = Fi(x;-1,0), xi—1=F"'(x;,0)

1

Where we denote such a discrete trajectory as 7 = {x¢,x1, -+, Xy} The flow follows the
composition of functions F' = Fxy o F)y_1 - - - F5 o Fy. Furthermore, the following equation is
obeyed, using the change-of-variables formula and following the path:

an'_l(Xi)

N
log p(xo0) =logp(xy) — ) _ log |det(—5—=2)|.

=1
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A diffusion model is a stochastic differential equation (SDE) of the form

dx = f(x,t)dt + g(t)dw,

where f : R? x R — R%is a drift function (frequently, but not necessarily, linear), and
g : R — R is a diffusion function (frequently constant).

It is a known result such an SDE has a backward process
dx = [f(x,t) — g*(t)s(x, t,0)]dt + g(t)dw.

In particular, we can perform the forward SDE on a segment of data, i.e., an image, in a
noise-injecting process. The noise can be reversed with such a backwards SDE to restore the
original image. This occurs when the neural network s(x, ¢, §) coincides with score function (log
density gradient w.r.t. space) of the forward probability flow.

We write the trajectory distributions as
N N

pr(7) = pr(Xo) HPF(Xz'|Xz‘—1), pB(T) = p(XT) HPB(Xz'—1|Xz')-
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We present diffusion normalizing flow (DiffFlow). This is essentially a diffusion model in which
the drift term is learnable as a neural network. The forward SDE becomes

dx = f(x,t,0)dt + g(t)dw,
with a corresponding backwards SDE
dx = [f(x,t,0) — g*(t)s(x,t,0)]dt + g(t)dw.

It is the goal of the final result at zero time of the backwards process to match the true
distribution in the forward process.

To train DiffFlow, we minimize the KL divergence over the trajectory space 7.

University of lllinois Urbana-Champaign - Department of Statistics



We use the following numerical scheme as a means of implementation:

Xi+i = X3 o b fZ(Xz)AtZ + gz5f AV Atl
Xp = Xpp— [Barlbsaa)— gz'2+1si+1(xi+1)]Ati + gir108 /At

for Gaussian noise 7,62 ~ N(0,I). Neural networks are evaluated at discrete time locations
given by {ti}iLo.

It is clear, using log properties and the forward and backward trajectory distributions, the KL loss
to be minimized is given by

N-1
PFr(Xi|Xi—
KL(pr (r)lps(r)) = Er~pe logpr (xo) +Ervpr [ logps (xn)l+ ) Ervpr [log ]ﬁ '
s s i=1 o i— i L
LO LN ~~

L;
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Furthermore, it can be shown the backward Gaussian noise satisfies

1
513(7):— X; — Xit1 + [figa(x; 1)_92'2 Si+1(Xiy1)] AL,
gi+1\/A_t + + + +1°1+ +

In addition, we will show later that the final loss function in the training algorithm is given by

L:=E;p.[-logpa(xn) + Z %(525(7))2] = EsF xq~po[— l0g pB(XN) + Z %(55(7))2]-
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/Algorithm 1 Training \

repeat

X ~ Real data distribution

Discrete timestamps: ¢,

Sample: 7 = {x;}, based on 67

Gradient descent step Vg[— log pp(xn) + >, 3(67(7))?]
until converged

\2
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Theorem 1. As diffusion coefficients g; — 0, DiffFlow reduces to Normalizing Flow. Moreover,
minimizing the objective function in Equation (13) is equivalent to minimizing the negative log-
likelihood as in Equation (4).
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DiffFlow is particularly strong for capturing images with
sharp boundaries.
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First, we prove 9logpr(x(t)) _  of .
P ot B tr(@x)

The proof follows from the Neural Ordinary Differential Equations (Chen., R.T.Q., et al.) paper.

‘x

heorem (Instantaneous Change of Variables). Let z(t) be a finite continuous random variable with probability

p(z(t)) dependent on time. Let % = f(z(t),t) be a differential equation describing a continuous-in-time
transformation of z(t). Assuming that f is uniformly Lipschitz continuous in z and continuous in t, then the
change in log probability also follows a differential equation:

Ologp(z(t)) df
\ — 5 =W (E(t))

J
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Proof: We begin by denoting the solution over an infinitesimal change in time through a
transformation

z(t +¢) =T:(z(t)).
Furthermore, we assume sufficiently nice conditions. Using the definition of the derivative, and the
change of variables property (multiplying by Jacobian determinant)

Dlogp(a(t) _ | logp(a(t)) ~log|det ZT.(2(t)] ~ logp(z()

ot e—0Tt €
. log|det ZT.(z(t))|
= — lim =
e—0Tt €
9 1og |d t 5 T t
= — lim og| ‘ 2 ())| (by L’Hopital’s rule)
e—0t 55
- |det STe((1)))| ( dlog(z) >
= — lim 5 =11
ot |det 55 Te(2(1))] oz |,
. 0 0 1 0 0
(eﬂl+ e | 9a ))D <sf51+ [det aT(z(t))|> ~ % e |9t 5T ))|
bou‘nrded :’1 d
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It follows using the derivative of the determinant

%gg;iz(t)) — — lim u (adj (%Ts(z(t))) %%Te(Z(t)))

= _tr (613& adj (%Ta (z(t)))) (sliréi % %Te (z(t)))

P

K i

=T

. 04
= —tr (EI_I)I(I)I+ B aTe(z(t)))
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and using Taylor expansions,

2P (i, 22 (a+ ef(alt), )+ OE) + OE) + )
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Next, we derive the DiffFlow loss function.

The KL divergence between forward and backward trajectories is given by

KL(pr(7)|pe(7)) = KL(pr(x0)pr (T|%0)|pB(XN)PB(T|XN))

pr(T|x0)
= E lo Xg) — lo xn) + lo
i B PE (Fe) —log palz) ® pe(rlxn) )]

where the first line is given by the conditional probability property, and the second by definition of KL
divergence and log properties.
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Furthermore,
pr(7|X0) _ pr(Xn[Xn-1)---pr(X2|X1)pr(X1|Xo0)
pe(TIXN)  pPB(XN-1|XN) - pB(X1]X2)PB(X0[X1)

which follows immediately using the trajectory distributions (discussed previously) and conditional
probability property, and

pr(xilxi-1) _ giN(57]0,1) p(6;) 1...B2 oFy2

pe(xi—1|xi)  git1N (670, 1) og p(38) 2[(51 )" — (65 )71,

(proof omitted), our loss function becomes

pF(Xilxz‘—l)]
pB(Xi—1(x:)

KL(pr(7)|lps(7)) = —H (pr(x0)) + TEF[— logpp(xn) + Z log

—H(pr(x0)) + E _[~logps(xn) +log +Zlo P<z
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The first and third terms are constant, so we aim to minimize empirically
E [-logps(xn +Z ((5B —(87)%)].
T~YPER i—0
Expectation of the final term is constant, reducing the loss further to
N
LE [~logps(xn) + Y 5(67)°).
=1

Setting the discrete processes equal to each other at a particular index, we have

5B — gz 5F [fz—l—l fl

+ git18i+1]VAL;.
gi+1 gi+1
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We provide a marginal equivalent SDE to the primary backwards SDE. We show

1 2
*’2A P (O)s(x, £, 0)|dt + Ag(t)dw

is marginally equivalent to the DiffFlow SDE

dx = [f(x,t,0) — ¢*(t)s(x,t,0)]dt + g(t)dw.

According to the Fokker-Planck equation, using the corresponding diffusion and drift functions, we
have

8pl (X7 t) _ a
8t - ; 8:131

for the DiffFlow SDE.

dx = [f(x,t,0) —

(.1) - g?OsiCe o (e, )} — L0 3o 2 i)
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Considering the second SDE again,

2
! *'QA P(1)s(x, £, O)]dt + Ag(t)dw

dx = [f(x,t,0) —

and denote

A~ 2
f(x,t) = £(x,t) — 202 (t)s(a, ).
Again, with the FKP equation, the distribution evolves according to

Op2(x,t) 0 .z B Mg () 0?
T - ; ze (X: t)pQ(xa t)] 9 ; axg [pQ (X7 t)]
Observe the fact
32 B 0 dlog p(x,t)
ox? Z 0x; 3:13Z #at)] = ; ox; [p(x, ) ox; |
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We have

_ Z 8‘; [fi(x, t)pa(x,t)] — A 92 (1) Z 6‘12 [p2(x,1)]

— ; aiz [fi(x, t)pa(x,t)] — ( - 1)9 Z o . alog;zz(x t) t) Z 527 [p2 (x,2)]

A 2_
== 3 o {lfie ) + A 1°g§;fx’t)1 20 0)} Z 2 It 0)

== [0 - ZEERD ) - S0 S )

Since the score corresponds to the gradient, we have the result.
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