
Andrew Gracyk - UCSB Department of Mathematics

Convolutional neural networks in
learning Fokker-Planck equations

Andrew Gracyk

For completion of MA

Advisor: Paul Atzberger. Thesis committee: Katy
Craig, Xu Yang.

Andrew Gracyk - UCSB Department of Mathematics

Objective

It is our overarching goal to deduce
Fokker-Planck drift and diffusion
coefficients given data of solutions.

We may employ machine learning
techniques in order to do so.

Andrew Gracyk - UCSB Department of Mathematics

Convolutional neural network (CNN) background

Andrew Gracyk - UCSB Department of Mathematics

CNN background

CNNs do not only classify. Backpropagation
can be performed between one image and
another. Here, our CNN can learn the
Laplacian.

In particular, we can evaluate Fokker-Planck solutions over numerical
domain

and define the continuous PDFs over

Andrew Gracyk - UCSB Department of Mathematics

Turning Fokker-Planck solutions into images

We can turn Fokker-Planck solutions into
“images” by discretizing a domain and evaluating
solutions over this.

Andrew Gracyk - UCSB Department of Mathematics

Turning Fokker-Planck solutions into images

Define the boundary of this discretized
domain

This boundary will prove valuable for
our numerical methods.

Andrew Gracyk - UCSB Department of Mathematics

Integration condition

We provide the integration condition,
which is important for initial conditions.

Our general PDFs cohere to

but in the context of our problem we
consider

Here, is a multivariate PDF that
solves the Fokker-Planck, is a
random vector, is time, and is an
initial condition.

Andrew Gracyk - UCSB Department of Mathematics

What will CNNs do for us?

Our CNNs can do two things:

1) Learn the differential operator (a mapping from a
solution to some new lattice)

2) A direct mapping from one solution to another

Andrew Gracyk - UCSB Department of Mathematics

How will CNNs attain our goal?

Our CNN kernels should be dependent on drift and
diffusion coefficients.

We can introduce a second CNN that maps the kernels of
the first to the predicted coefficients.

Andrew Gracyk - UCSB Department of Mathematics

The Fokker-Planck equation

We will hold drift and diffusion terms as constant functions. It is
our goal to learn these constants given data with these values
unknown.

We may evaluate Fokker-Planck solutions over our discretized
domain using a numerical method. Our numerical solutions
will be denoted

These form lattices which act as images, perfect for our CNNs.
We will discuss our numerical method later.

Andrew Gracyk - UCSB Department of Mathematics

Our data: numerical solutions

Andrew Gracyk - UCSB Department of Mathematics

Fokker-Planck solutions example

Andrew Gracyk - UCSB Department of Mathematics

Fokker-Planck solutions example

Diffusion

Drift

We extract the Fokker-Planck differential operator. We can rewrite our the Fokker-Planck
equation as

A large portion of what we’ll do is attempting to deduce the right-hand side with CNNs. The
differential operator given by

With a discretization, our PDE formulation becomes

Andrew Gracyk - UCSB Department of Mathematics

The Fokker-Planck differential operator

Andrew Gracyk - UCSB Department of Mathematics

Initial conditions

We establish two initial conditions, which are as follows:

where is a vector of means and is a variance-covariance matrix; and

where coefficient is predetermined. We only consider distributions with the
desired support.

Andrew Gracyk - UCSB Department of Mathematics

Designing our CNNs

We consider two types of CNNs, each with a different
purpose:

1) The first has the goal of learning either the
differential operator or a direct mapping
between solutions.

2) The second has the goal of predicting drift and
diffusion values from the kernels of the first.

Andrew Gracyk - UCSB Department of Mathematics

CNN Illustration

Our first type of CNN has the aim of learning a function

where is a PyTorch tensor of dimension that is
mapped to a new PyTorch tensor with lattice elements. are
trainable kernel hyperparameters.

The input tensor will be a Fokker-Planck solution. The output tensor is the
differential operator lattice or the next Fokker-Planck solution.

Andrew Gracyk - UCSB Department of Mathematics

Our first type of CNN

Andrew Gracyk - UCSB Department of Mathematics

Our second type of CNN

Our second type of CNN learns the function

Where input tensor is a concatenation of kernels from the first CNN .
 is some prediction tensor to any collection of drift or diffusion values.

Andrew Gracyk - UCSB Department of Mathematics

Our strategy

1) We begin by training by generating data with drift and diffusion values
within sequences with ranges .

2) With the kernels created from this, we can train to map the kernels to
drift or diffusion values.

3) Now, we can again construct Fokker-Planck solution data with new
coefficients. This is the data expected to have unknown values.

4) We can feed this data into to predict the drift and diffusion values.

We start our investigation by considering the PDE

with objective of recovering diffusion constant given snapshots of data
 . .

This is a Fokker-Planck equation given . is an initial condition.

Andrew Gracyk - UCSB Department of Mathematics

A simplified case: the diffusion equation

Andrew Gracyk - UCSB Department of Mathematics

A simplified case: the diffusion equation

Here, we map solutions to the numerical Laplacian lattices .

To do this, CNN learns an operator represented with one kernel. A second CNN that
takes kernel negative transpose is applied, and so is learned.

Our hypothesis space for is constrained to

 .

Operator may have a non-unique representation given

 .

The kernel weights from are formed into our dataset for .
 .

Andrew Gracyk - UCSB Department of Mathematics

A simplified case: the diffusion equation

Andrew Gracyk - UCSB Department of Mathematics

The advection-diffusion equation

Next, we investigate the advection-diffusion equation in an
attempt to learn its coefficients. Our PDE formulation is
below:

This is a Fokker-Planck equation if we hold
with .

Andrew Gracyk - UCSB Department of Mathematics

The advection-diffusion equation

Our numerical PDE formulation becomes

where the terms are separated with the Laplacian and advection operators.

Here, the Laplacian operator is learned just as before, but we also learn skew-symmetric
operator .

Our CNN stencil learns . A new CNN takes this stencil transpose, and we minimize loss
with convolution with and the numerical advection lattice.

Andrew Gracyk - UCSB Department of Mathematics

The advection-diffusion equation

Andrew Gracyk - UCSB Department of Mathematics

The advection-diffusion equation

The table represents the ability to recover drift coefficients.
Our first CNN learns the advection operator only.

Andrew Gracyk - UCSB Department of Mathematics

The advection-diffusion equation

Here, it is our aim for our CNN to learn an operator such that

Lattice is mapped directly to .

Andrew Gracyk - UCSB Department of Mathematics

Long-time integration

Andrew Gracyk - UCSB Department of Mathematics

Our numerical method

Allow us to provide our full numerical method for generating data. We
provide it here since this is the most general case.

We perform a backward scheme with this method. are the lattice
elements.

Andrew Gracyk - UCSB Department of Mathematics

Long-time integration continued

Our optimization problem for
our LTI method is as follows:

Andrew Gracyk - UCSB Department of Mathematics

Long-time integration continued

Andrew Gracyk - UCSB Department of Mathematics

Long-time integration continued

Andrew Gracyk - UCSB Department of Mathematics

Finite difference methods

With finite difference methods (FDMs), we learn the unconstrained differential operator,
which is the right-hand side of

which can be reformulated as

 .

We are learning the lattice that is the numerical approximation of the operator applied to
which is

 .

Andrew Gracyk - UCSB Department of Mathematics

Finite difference methods

We can learn this differential operator
with the loss minimization problem

where our CNN takes place of our
differential operator.

Andrew Gracyk - UCSB Department of Mathematics

Finite volume methods

Our next problem is learning an operator such that the following equation is satisfied:

The divergence theorem is employed here, meaning we take surface integrals. The flux
passses through the cells

created around the discretized points in . is cell Lebesgue measure and
are the cell faces.

Andrew Gracyk - UCSB Department of Mathematics

Finite volume methods

Illustration of cell construction and flux through cells.

Andrew Gracyk - UCSB Department of Mathematics

Finite volume methods

Our loss minimization problem to learn
this operator is

Andrew Gracyk - UCSB Department of Mathematics

Finite volume methods

Here, we are producing a vector field from a lattice. We require a CNN with two output
channels, one learning the direction, the other the .

Hence, we can write

 .

We require vector field values along the cell faces and not cell centers. Such means we
can solve our problem with a staggered mesh setup.

Andrew Gracyk - UCSB Department of Mathematics

FDM and FVM results

Andrew Gracyk - UCSB Department of Mathematics

FDM and FVM results

Andrew Gracyk - UCSB Department of Mathematics

FDM and FVM results

In general, we did not find data set size for significantly affected results. There are
notable computational expenses for greater quantities of data, namely generating
Fokker-Planck data and training for 3,000 epochs.

We train on higher amounts of data to see results. We use FVMs.

There is minimal discernible impact.

Andrew Gracyk - UCSB Department of Mathematics

Conclusion

We can turn Fokker-Planck solutions into images. We may
train CNNs to learn differential operators or direct
mappings. We can learn the coefficients given data with
these values unknown. Relative error is consistently under
5% when one coefficient is unknown and under 15% when
all four are unknown.

Andrew Gracyk - UCSB Department of Mathematics

References

Andrew Gracyk - UCSB Department of Mathematics

Questions?

Thanks for listening!

