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Objective

It is our overarching goal to deduce 
Fokker-Planck drift and diffusion 
coefficients given data of solutions. 

We may employ machine learning 
techniques in order to do so.
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Convolutional neural network (CNN) background
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CNN background

CNNs do not only classify. Backpropagation 
can be performed between one image and 
another. Here, our CNN can learn the 
Laplacian.



In particular, we can evaluate Fokker-Planck solutions over numerical 
domain

and define the continuous PDFs over 
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Turning Fokker-Planck solutions into images

We can turn Fokker-Planck solutions into 
“images” by discretizing a domain and evaluating 
solutions over this.
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Turning Fokker-Planck solutions into images

Define the boundary of this discretized 
domain

This boundary will prove valuable for 
our numerical methods.
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Integration condition

We provide the integration condition, 
which is important for initial conditions.

Our general PDFs cohere to

but in the context of our problem we 
consider

Here,      is a multivariate PDF that 
solves the Fokker-Planck,       is a 
random vector,     is time, and       is an 
initial condition.  
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What will CNNs do for us?

Our CNNs can do two things:

1) Learn the differential operator (a mapping from a 
solution to some new lattice)

2) A direct mapping from one solution to another
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How will CNNs attain our goal?

Our CNN kernels should be dependent on drift and 
diffusion coefficients.

We can introduce a second CNN that maps the kernels of 
the first to the predicted coefficients.
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The Fokker-Planck equation

We will hold drift and diffusion terms as constant functions. It is 
our goal to learn these constants given data with these values 
unknown.  



We may evaluate Fokker-Planck solutions over our discretized 
domain       using a numerical method. Our numerical solutions 
will be denoted

These form lattices which act as images, perfect for our CNNs. 
We will discuss our numerical method later.
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Our data: numerical solutions
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Fokker-Planck solutions example
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Fokker-Planck solutions example

Diffusion

Drift



We extract the Fokker-Planck differential operator. We can rewrite our the Fokker-Planck 
equation as

A large portion of what we’ll do is attempting to deduce the right-hand side with CNNs. The 
differential operator given by

With a discretization, our PDE formulation becomes
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The Fokker-Planck differential operator
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Initial conditions

We establish two initial conditions, which are as follows:

where       is a vector of means and        is a variance-covariance matrix; and

where coefficient      is predetermined. We only consider distributions with the 
desired support. 
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Designing our CNNs

We consider two types of CNNs, each with a different 
purpose:

1) The first has the goal of learning either the 
differential operator or a direct mapping 
between solutions.

2) The second has the goal of predicting drift and 
diffusion values from the kernels of the first.



Andrew Gracyk - UCSB Department of Mathematics

CNN Illustration



Our first type of CNN has the aim of learning a function

where        is a PyTorch tensor of dimension                                                that is 
mapped to a new PyTorch tensor        with lattice elements.                   are 
trainable kernel hyperparameters.

The input tensor will be a Fokker-Planck solution. The output tensor is the 
differential operator lattice or the next Fokker-Planck solution.
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Our first type of CNN
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Our second type of CNN

Our second type of CNN learns the function

Where input tensor         is a concatenation of kernels from the first CNN      .            
       is some prediction tensor to any collection of drift or diffusion values.
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Our strategy

1) We begin by training       by generating data with drift and diffusion values 
within sequences with ranges                                                                      . 

2) With the kernels created from this, we can train       to map the kernels to 
drift or diffusion values.

3) Now, we can again construct Fokker-Planck solution data with new 
coefficients. This is the data expected to have unknown values. 

4) We can feed this data into       to predict the drift and diffusion values. 



We start our investigation by considering the PDE

with objective of recovering diffusion constant                           given snapshots of data
              .  .

This is a Fokker-Planck equation given                                 .         is an initial condition.
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A simplified case: the diffusion equation
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A simplified case: the diffusion equation

Here, we map solutions                  to the numerical Laplacian lattices                     .                        

To do this, CNN        learns an operator       represented with one kernel. A second CNN that 
takes kernel negative transpose            is applied, and so                         is learned.

Our hypothesis space for      is constrained to

                                                                                                                         .

Operator       may have a non-unique representation given  

                                                                                                                            .

The kernel weights from      are formed into our dataset for       . 
                                                                                                                               .
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A simplified case: the diffusion equation
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The advection-diffusion equation

Next, we investigate the advection-diffusion equation in an 
attempt to learn its coefficients. Our PDE formulation is 
below:

This is a Fokker-Planck equation if we hold                                    
with                     .  
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The advection-diffusion equation

Our numerical PDE formulation becomes

where the terms are separated with the Laplacian and advection operators.

Here, the Laplacian operator is learned just as before, but we also learn skew-symmetric 
operator                                  . 

Our CNN stencil learns       . A new CNN takes this stencil transpose, and we minimize loss 
with convolution with      and the numerical advection lattice. 
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The advection-diffusion equation
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The advection-diffusion equation

The table represents the ability to recover drift coefficients. 
Our first CNN learns the advection operator only.
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The advection-diffusion equation



Here, it is our aim for our CNN           to learn an operator      such that

Lattice         is mapped directly to            .
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Long-time integration
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Our numerical method

Allow us to provide our full numerical method for generating data. We 
provide it here since this is the most general case.

We perform a backward scheme with this method.         are the lattice 
elements.
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Long-time integration continued

Our optimization problem for 
our LTI method is as follows:
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Long-time integration continued
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Long-time integration continued
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Finite difference methods

With finite difference methods (FDMs), we learn the unconstrained differential operator, 
which is the right-hand side of

which can be reformulated as

                                                                                                      .

We are learning the lattice that is the numerical approximation of the operator applied to      
which is

                                                                                                                                        .
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Finite difference methods

We can learn this differential operator 
with the loss minimization problem

where our CNN             takes place of our 
differential operator.
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Finite volume methods

Our next problem is learning an operator such that the following equation is satisfied:

The divergence theorem is employed here, meaning we take surface integrals. The flux 
passses through the cells

created around the discretized points in     .            is cell Lebesgue measure and
are the cell faces.
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Finite volume methods

Illustration of cell construction and flux through cells.
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Finite volume methods

Our loss minimization problem to learn 
this operator is
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Finite volume methods

Here, we are producing a vector field from a lattice. We require a CNN with two output 
channels, one learning the         direction, the other the         .

Hence, we can write

                                                                                                                                .

We require vector field values along the cell faces and not cell centers. Such means we 
can solve our problem with a staggered mesh setup.
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FDM and FVM results
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FDM and FVM results
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FDM and FVM results

In general, we did not find data set size for       significantly affected results. There are 
notable computational expenses for greater quantities of data, namely generating 
Fokker-Planck data and training       for 3,000 epochs.

We train on higher amounts of data to see results. We use FVMs.

There is minimal discernible impact.
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Conclusion

We can turn Fokker-Planck solutions into images. We may 
train CNNs to learn differential operators or direct 
mappings. We can learn the coefficients given data with 
these values unknown. Relative error is consistently under 
5% when one coefficient is unknown and under 15% when 
all four are unknown.
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Questions?

Thanks for listening!


