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Objective

It is our overarching goal to deduce
Fokker-Planck drift and diffusion
coefficients given data of solutions.

We may employ machine learning
techniques in order to do so.
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Convolutional neural network (CNN) background
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CNN background

u[z‘] f[i]
>
CNNs do not only classify. Backpropagation
can be performed between one image and
another. Here, our CNN can learn the
Laplacian.
\ _J
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Turning Fokker-Planck solutions into images

We can turn Fokker-Planck solutions into
‘images” by discretizing a domain and evaluating
solutions over this.

In particular, we can evaluate Fokker-Planck solutions over numerical
domain

N\

[ 0= {(—mh,nh) ceR?:heR,m,ne€ {—)\,...,—1,0,1,...,)\}}

J

and define the continuous PDFs over

[ Q = [~Ah, Ah] X [= AR, AR] ‘
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Turning Fokker-Planck solutions into images

Define the boundary of this discretized
domain

= U ((Eh, nh) U (nh, eh))

Le{—=A\ A} ne{—AX,...,—1,0,1,....\}

This boundary will prove valuable for
our numerical methods.
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Integration condition

We provide the integration condition, Here, P is a multivariate PDF that
which is important for initial conditions. solves the Fokker-Planck, X is a

random vector, t; is time, and pg is an
Our general PDFs cohere to initial condition.

[ [ sxetoax =1

but in the context of our problem we

consider
// p(X,ti|po)dX <1
Q
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What will CNNs do for us?

Our CNNs can do two things:

1) Learn the differential operator (a mapping from a
solution to some new lattice)
2) Adirect mapping from one solution to another
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How will CNNs attain our goal?

4 N

Our CNN kernels should be dependent on drift and
diffusion coefficients.

We can introduce a second CNN that maps the kernels of
the first to the predicted coefficients.

o J
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The Fokker-Planck equation

2

N
(X t|,00 Z XX, [Di; (X, t)p(X, t]po)]

X t X tlpo

IIMZ

We will hold drift and diffusion terms as constant functions. It is
our goal to learn these constants given data with these values
unknown.
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Our data: numerical solutions

We may evaluate Fokker-Planck solutions over our discretized
domain {2 using a numerical method. Our numerical solutions
will be denoted

q)i ~ Qvtz — Xatz
p(£2,ti[po) = p( o) Xeo

These form lattices which act as images, perfect for our CNNs.
We will discuss our numerical method later.
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Fokker-Planck solutions example
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Fokker-Planck solutions example
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The Fokker-Planck differential operator

We extract the Fokker-Planck differential operator. We can rewrite our the Fokker-Planck
equation as

Ip(X, t|po)

5 = Dlp(X tlpo)]

A large portion of what we’ll do is attempting to deduce the right-hand side with CNNs. The
differential operator given by

L0 2. 92
D=-) mizgg +2 %igxe
=1 71=1 J
With a discretization, our PDE formulation becomes

D, — D,
HA—t = D[{®i}iek]
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Initial conditions

[We establish two initial conditions, which are as follows: ]
B0 = (X, tg =0;1,3;) = ! 1(X TsTi(x
0= ylop = Ui 1, 241 —WGXP{_§ —Nl) 1 ( _Nl)}

where I1 is a vector of means and X2 is a variance-covariance matrix; and

—(v+2)/2

e e )

v

d}O :¢(Xat0 :0;V7“2’22) = T

where coefficient v is predetermined. We only consider distributions with the

desired support.
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Designing our CNNs

(We consider two types of CNNs, each with a different \
purpose:

1) The first has the goal of learning either the
differential operator or a direct mapping
between solutions.

2) The second has the goal of predicting drift and
\ diffusion values from the kernels of the first. )
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CNN lllustration
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Our first type of CNN

Ouir first type of CNN has the aim of learning a function

[Cl:TOXH%X...XH;;l%Tl]

where () is a PyTorch tensor of dimension m x 1 x (2A +1) x (2\ + 1) that is
mapped to a new PyTorch tensor 17 with lattice elements. 61, ..., 0;1 are
trainable kernel hyperparameters.

The input tensor will be a Fokker-Planck solution. The output tensor is the
differential operator lattice or the next Fokker-Planck solution.
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Our second type of CNN

Our second type of CNN learns the function

[CQ:@OXO%X...X%QAZO}

Where input tensor @ is a concatenation of kernels from the first CNN (.
3.0 is some prediction tensor to any collection of drift or diffusion values.
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Our strategy

1)  We begin by training C' by generating data with drift and diffusion values
within sequences with ranges 0 min < 0j,i < 0jmax, Mk,min < Mk < [k max .

2)  With the kernels created from this, we can train C* to map the kernels to
drift or diffusion values.

3) Now, we can again construct Fokker-Planck solution data with new
coefficients. This is the data expected to have unknown values.

4) We can feed this data into C* to predict the drift and diffusion values.
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A simplified case: the diffusion equation

We start our investigation by considering the PDE

{8p(a)§,t) =V [D(P,X)Vp(X,t)] :DA'O(Xat)a X € ﬁ,t € [O,T]
p(XatO :O) = ‘110

with objective of recovering diffusion constant D(p, X ) = D given snapshots of data
{®ktrex -

This is a Fokker-Planck equation given V x D(p, X) = 0. Wy is an initial condition.
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A simplified case: the diffusion equation

Here, we map solutions {(I)k:}k:elc to the numerical Laplacian lattices { APy } ek .

To do this, CNN C}, learns an operator R represented with one kernel. A second CNN that
takes kernel negative transpose —R7" is applied,andso L = —RTR is learned.

Our hypothesis space for R is constrained to

A ={0|0cR™" z'(-0"0)x <0 VxecR"\O0}
Operator R may have a non-unique representation given
L=—-(UR)(UR)=-R"U"UR=-R"IR=-R"R.

The kernel weights from L are formed into our dataset for C%, .

Andrew Gracyk - UCSB Department of Mathematics




A simplified case: the diffusion equation

Table 1: Diffusion equation

C}, stencil size | At | C}, ly-loss | C% (5-loss |l3 — Dyest|/Drest
3 %3 le-4 0.9682 0.0009 0.0709
3 x3 le-3 0.2208 3.9173e-5 0.0082
3x3 5e-3 0.0344 5.5073e-5 0.0245
5 X 5B le-4 0.9397 3.0797e-6 0.0181
5% b le-3 0.2328 9.5620e-5 0.0078
5% 5 5e-3 0.0379 4.0656e-5 0.0386
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The advection-diffusion equation

Next, we investigate the advection-diffusion equation in an
attempt to learn its coefficients. Our PDE formulation is

below:
{ ap(;?t) =V - (DVp(X,1)) = V- (v(X,t)p(X,1)), X e€Q,te0,T]
p(X tg =0) =T

This is a Fokker-Planck equation if we hold V xv(X,t) = 0
with v = (’Ul,’UQ).
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The advection-diffusion equation

Our numerical PDE formulation becomes

P, — P,
%tz = LO, + AD, = (L + A)9;

where the terms are separated with the Laplacian and advection operators.

Here, the Laplacian operator is learned just as before, but we also learn skew-symmetric
operator A = (1/2)(M — M7T).

Our CNN stencil learns M . A new CNN takes this stencil transpose, and we minimize loss
with convolution with A and the numerical advection lattice.

Andrew Gracyk - UCSB Department of Mathematics




The advection-diffusion equation

\IIO |Q Lq)() A(I)O
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The advection-diffusion equation

Table 2: Advection-Diffusion equation, advection term

Parameter(s) varied | 23" | [0; — vtest,i|/Vtest,i
o 0.0134
() 0.0529
Sl 0.0109

The table represents the ability to recover drift coefficients.
Our first CNN learns the advection operator only.
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The advection-diffusion equation

Table 3. Advection-diffusion equation, both advection and diffusion terms

Coefficient(s) varied Avg. relative | Avg. relative | Avg. relative
test error for | test error for | test error for
D; N Uy,

D; <1 0.0145 0.0070 0.0067

Dy 2l 0.0062 0.0376 0.0150

—1<w,; <0 0.0142 0.0277 0.0581

v1; <10 0.0023 0.0150 0.0237

—10<wp,; <0 0.0625 0.0663 0.0337

Dj,v1,; <10 0.0372 0.0066 0.0530

—10< D;,v2; <1 0.0572 0.0857 0.0276

—10 < v14,v2,; <10 0.0612 0.0714 0.0648

[Dil, [or], [va,i] < 1 0.0618 0.0663 0.1196

|D1l S 1, Ivl,i|7 |'I}2$i| S 5 0.0761 0.0153 0.0274

|D;| < 1, o], Jvas] <10 | 0.1043 0.0622 0.0701
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Long-time integration

Here, it is our aim for our CNN Cir; to learn an operator T such that

[ ®; 1 =IO, ]

Lattice P; is mapped directly to @, .
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Our numerical method

Allow us to provide our full numerical method for generating data. We
provide it here since this is the most general case.

( k.l k.1 \
D1 — P — g Prrlt — pE-L — e
At 2h 2h
(I)k+1,l . 2(Dk,l 4 (I)k:—l,l (I)k,l+1 o zq)k,l 2 (I)k',l—l
_+_ 0_1 m h;n m _|_0_2 m h;’n m
\ /
We perform a backward scheme with this method. cpf”l are the lattice
elements.
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Long-time integration continued

Our optimization problem for
our LTI method is as follows:

4 2 )

) k,l
Lrr(®i, @iia]01, ..., 08) = yrr Y Y [(T)"! - o¥]°
k l
1 2
= 'VLTI’ ‘CLTI[CI)Z'] — Qi1 ' ’2

(9%)*77(9117) _argmln{ Z‘CLTI (I)Z'7(I)i+1) }

\_ e J
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Long-time integration continued

Table 4. Learning coefficients with long-time integration method

At Coef. varied Error for | Error for | Error for | Error for
T T2, 01, 02,i
le-3 lpe1i] <0.25 1.1509 0.1683 0.0102 0.0157
le-3 |p2.il <0.25 0.0197 0.5881 0.1165 0.0868
le-3 lo1i] <0.25 0.0132 0.0155 0.1273 0.0087
le-3 lo2,i| < 0.25 0.0150 0.0113 0.0062 0.1130
le-3 |1l <10 0.1282 0.0022 0.0880 0.0382
le-3 |p2qil < 10 0.0218 0.0586 0.1132 0.0862
le-2 |pe1,s] <0.25 0.8962 0.0033 0.0113 0.0142
le-2 |p2.i <0.25 0.0110 0.7830 0.0110 0.0118
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Long-time integration continued

Table 5. Learning coefficients with LTI continued

Coef. varied Error for | Error for | Error for | Error for
T Ho,i T 02,

11.4], |p2,4] < 0.25 | 0.7406 0.9219 0.0085 0.0120

il |p2d) <10 | 0.2362 0.2114 0.0052 0.0113

|o1.il,|o2.4] < 0.25 | 0.0083 0.0217 0.2312 0.1638
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Finite difference methods

With finite difference methods (FDMs), we learn the unconstrained differential operator,
which is the right-hand side of

$; 1 — P
At

= Drpm | P
which can be reformulated as
;11 = (14 At Drpm)Pi -

We are learning the lattice that is the numerical approximation of the operator applied to D,
which is

Drpm - @i =Drpum [P [( Z#%aX +ZJJ(‘3X2) (Xt |p0)”xea'
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Finite difference methods

We can learn this differential operator
with the loss minimization problem

e
7 (I)i _,Bi 2
FDM((I)i7(I)i+1|9%7---,9i) = ’YFDMH +1At >

\ 4

where our CNN Cj.,,, takes place of our
differential operator.
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Finite volume methods

Our next problem is learning an operator such that the following equation is satisfied:

k,l k,l
(I)i—I—l B (I)z _

1
At meEn) 2 /fDFVM[(I)i].dA

feFy

The divergence theorem is employed here, meaning we take surface integrals. The flux
passses through the cells

C:{[Xk_%,Xk+%] X [Xl—%?Xl—}-%] X [O,f] | k,l e {1,...,2)\+1},€€R+}

created around the discretized points in €2. pu(cx,) is cell Lebesgue measure and Fy, ;
are the cell faces.
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Finite volume methods

lllustration of cell construction and flux through cells.
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Finite volume methods

Our loss minimization problem to learn
this operator is

/
. P, — P 2
i B 10). 0L = H i1 T A,
FVM((I)vq)-Fl' 1s 70k) YFV M At >
1
HAOR,1 fEF) f
\_ J
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Finite volume methods

Here, we are producing a vector field from a lattice. We require a CNN with two output
channels, one learning the —+x direction, the other the :I:y-.

Hence, we can write

/CFVM Z / CFVM’ FVM) ®;-dA.

feFL feFy

We require vector field values along the cell faces and not cell centers. Such means we
can solve our problem with a staggered mesh setup.
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FDM and FVM results

Table 6. Learning coefficients with FDMs

Coefficient(s) varied Error for | Error for | Error for | Error for

01 02, Ha,i Ha,i
0<o1; <1 0.0304 0.0129 0.0108 0.0473
0<o9; <1 0.0245 0.0195 0.0194 0.0333
0<p; <1 0.0322 0.0095 0.0672 0.0211
—1< 2 <0 0.0173 0.0213 0.0287 0.0399
0<py; <10 0.0170 0.0126 0.0869 0.0175
—10 < puo; <0 0.0449 0.0441 0.0174 0.0728
lo1il, o2, <1 0.0592 0.0987 0.0231 0.0979
[pensals |2l <1 0.0205 0.0093 0.0440 0.0235
[pensil, |po,i] <10 0.0131 0.0139 0.0655 0.0652
|U'1’i|., |0'1’i|, |,ul,i|', ]lu?,'il S il 0.0712 0.0916 0.0285 0.0100
|0'1,i|, lO‘]y,‘l < 1, I/leil, |/J,2,i| < 0.1738 0.1366 0.0376 0.0123
10
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FDM and FVM results

Table 7. Learning coefficients with FVMs

Coefficient(s) varied Error for | Error for | Error for | Error for

01,i G2,i i H2,i
0<ao; <1 0.0390 0.0121 0.0255 0.0185
0<o9; <1 0.1040 0.0503 0.1039 0.1037
0<p; <1 0.0174 0.0191 0.0136 0.0227
—1< e <0 0.0231 0.0287 0.0230 0.0302
0<py,; <10 0.0613 0.0608 0.0788 0.0172
—10 < p2,i <0 0.0363 0.0369 0.0092 0.0599
o1l 102, < 1 0.0731 0.0369 0.0131 0.0105
il |zl <1 0.0192 0.0275 0.0082 0.0205
il p2.4] < 10 0.0515 0.0526 0.0541 0.0748
lovil, lonal, [l [pea] <1 0.1186 0.1238 0.1586 0.1669
ol loval < 1wl |pes] < | 0.1597 0.0822 0.0124 0.0180
10
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FDM and FVM results

In general, we did not find data set size for C? significantly affected results. There are
notable computational expenses for greater quantities of data, namely generating
Fokker-Planck data and training C! for 3,000 epochs.

We train on higher amounts of data to see results. We use FVMs.

Table 8. Learning coefficients with FVMs, higher quantity of C#,,,, data

Coefficient(s) varied Error for | Error for | Error for | Error for
O 02, M1, H2,i

[o1.4], [o24] < 1 0.2959 0.2947 0.0253 0.0653

Bl |p2,] <1 0.0263 0.0328 0.0173 0.0346

ol lovl, [l [pes] <1 0.0388 0.0535 0.0538 0.1059

There is minimal discernible impact.
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Conclusion

We can turn Fokker-Planck solutions into images. We may
train CNNs to learn differential operators or direct
mappings. We can learn the coefficients given data with
these values unknown. Relative error is consistently under
5% when one coefficient is unknown and under 15% when
all four are unknown.
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Questions?

Thanks for listening!
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