
Andrew Gracyk - University of Illinois at Urbana-Champaign - DIGIMAT

Introduction to PyTorch with NNs,
CNNs, and PINNs

Andrew Gracyk - University of Illinois at Urbana-Champaign - DIGIMAT

Outline

In this presentation, we discuss fundamentals of types
of neural networks, and their constructions using
PyTorch, in the context of PDEs.

We discuss three types of neural networks: artificial
neural networks (ANNs), convolutional neural networks
(CNNs), and physics-informed neural networks
(PINNs).

CNNs develop more sophisticated architecture. PINNs
allow for more creative loss functions

Andrew Gracyk - University of Illinois at Urbana-Champaign - DIGIMAT

Presentation Purpose

The purpose of this presentation is not to introduce
particular models in machine learning, but rather to
teach how to actually code any model with PyTorch.

The examples we choose are specific, but can be
extended to any application.

A common loss function is MSE loss, which takes
the form

The abstract goal of a neural network is to seek a function

mapping a collection of input data to output . We say the network is
parametrized by . We find optimal parameter by minimizing a loss (cost) function

applied to a collection of training data.

Andrew Gracyk - University of Illinois at Urbana-Champaign - DIGIMAT

A Reminder: Setting Up a Neural Network

Andrew Gracyk - University of Illinois at Urbana-Champaign - DIGIMAT

Creating an ANN

In this example, we examine a simple neural network by mapping randomly generated input
functions to that in which its scaled second derivative operator is applied, meaning we learn
the (discrete) mapping from u to f that adheres to the equation

An effective architecture to deduce such a mapping is to first learn

with neural networks, where belong to the mesh in which the
function is evaluated. A second neural network learns

These neural networks are called branch and trunk neural networks respectively. Here,
. is the point where we are finding the function with the operator applied. Our final output
is given by

This framework, known as a Stacked DeepONet, is very effective for our problem.

Andrew Gracyk - University of Illinois at Urbana-Champaign - DIGIMAT

Creating an ANN

Andrew Gracyk - University of Illinois at Urbana-Champaign - DIGIMAT

ANN Results

Training results

Test results

Andrew Gracyk - University of Illinois at Urbana-Champaign - DIGIMAT

ANN Code

PyTorch has its own data structures for machine learning operations. These data
structures are called tensors.

We can construct a simple unscaled MLE loss function with

Andrew Gracyk - University of Illinois at Urbana-Champaign - DIGIMAT

ANN Code

We create our branch and trunk
networks separately.

Branch

Trunk

We declare however many branch
networks we would like. We change
the number of outputs in the trunk
network to correspond.

Andrew Gracyk - University of Illinois at Urbana-Champaign - DIGIMAT

ANN Code

It is difficult to divide our dataset into batches using DeepONets, based on the repetitive
reconstruction of our input tensors, but this is not needed for datasets modest in size.

To demonstrate our convolution neural network, we
consider the problem of learning the mapping

for Laplacian .

In particular, we discretize ,
and our input data is and our target data is
 . Our optimization problem in this particular
instance becomes

for our CNN .

Andrew Gracyk - University of Illinois at Urbana-Champaign - DIGIMAT

Creating a CNN

Andrew Gracyk - University of Illinois at Urbana-Champaign - DIGIMAT

CNN Results

Test results

Andrew Gracyk - University of Illinois at Urbana-Champaign - DIGIMAT

CNN Code

Simple, shallow CNN
with only two
convolution layers with a
moderate number of
nodes.

Andrew Gracyk - University of Illinois at Urbana-Champaign - DIGIMAT

CNN Code

We can tune the hyperparameters such as number of epochs and learning
rate as needed. Again, batches are unnecessary with modest amounts of
data, although they are much easier to implement with this framework.

Suppose now we wanted to learn the PDE solution to an equation with a time operator as
well, such as the one-dimensional heat equation

Andrew Gracyk - University of Illinois at Urbana-Champaign - DIGIMAT

The Basics of PINNs

Andrew Gracyk - University of Illinois at Urbana-Champaign - DIGIMAT

The Basics of PINNs

Physics-informed neural networks (PINNs) are a great mechanism to accomplish learning
solutions of PDEs with a time derivative.

The key component to a PINN that differentiates it from an ANN is a modified loss function. A
PINN loss takes the form

PyTorch differentiation methods can be used in the loss function, bypassing numerical
methods. The remaining components of the ANN such as architecture are standard. The
neural network takes time and spatial parameters. is an arbitrary differential operator.

Andrew Gracyk - University of Illinois at Urbana-Champaign - DIGIMAT

PyTorch Differentiation

A basic example using PyTorch to differentiate a discrete function is
as follows:

First and
second
derivatives

Andrew Gracyk - University of Illinois at Urbana-Champaign - DIGIMAT

Designing PINN Loss

We use the following loss:

We can extend PINNs to more sophisticated PDEs, such as vorticity-form Navier-Stokes

and the viscous Burgers’ equation

Andrew Gracyk - University of Illinois at Urbana-Champaign - DIGIMAT

Alternative PDEs

Andrew Gracyk - University of Illinois at Urbana-Champaign - DIGIMAT

References

● Lu, L,, Jin, P., Pang, G., Zhang, Z., & Karniadakis, G.E. Learning Nonlinear Operators
via DeepONet Based on the Universal Approximation Theorem of Operators. In Nature
Machine Intelligence. https://www.nature.com/articles/s42256-021-00302-5.

● Raissi, M., Perdikaris, P., Karniadakis, G.E. Physics Informed Deep Learning (Part I):
Data-driven Solutions of Nonlinear Partial Differential Equations.
https://arxiv.org/abs/1711.10561.

● Lorin, E., Yang, X. Schwarz Waveform Relaxation Physics-Informed Neural Networks
for Solving Advection-Diffusion-Reaction Equations. https://arxiv.org/abs/2111.02559.

https://www.nature.com/articles/s42256-021-00302-5
https://arxiv.org/abs/1711.10561
https://arxiv.org/abs/2111.02559

