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Introduction to PyTorch with NNs, 
CNNs, and PINNs
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Outline

In this presentation, we discuss fundamentals of types 
of neural networks, and their constructions using 
PyTorch, in the context of PDEs.

We discuss three types of neural networks: artificial 
neural networks (ANNs), convolutional neural networks 
(CNNs), and physics-informed neural networks 
(PINNs).

CNNs develop more sophisticated architecture. PINNs 
allow for more creative loss functions
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Presentation Purpose

The purpose of this presentation is not to introduce 
particular models in machine learning, but rather to 
teach how to actually code any model with PyTorch.

The examples we choose are specific, but can be 
extended to any application.



A common loss function is MSE loss, which takes 
the form

The abstract goal of a neural network is to seek a function

mapping a collection of input data                                           to output            . We say the network is 
parametrized by            . We find optimal parameter by minimizing a loss (cost) function

applied to a collection of training data.
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A Reminder: Setting Up a Neural Network
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Creating an ANN

In this example, we examine a simple neural network by mapping randomly generated input 
functions to that in which its scaled second derivative operator is applied, meaning we learn 
the (discrete) mapping from u to f  that adheres to the equation 



An effective architecture to deduce such a mapping is to first learn

with     neural networks, where                                        belong to the mesh in which the 
function is evaluated. A second neural network learns     

                                    
                                                                        
These neural networks are called branch and trunk neural networks respectively. Here,        
.    is the point where we are finding the function with the operator applied. Our final output 
is given by

This framework, known as a Stacked DeepONet, is very effective for our problem.
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Creating an ANN
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ANN Results

Training results

Test results
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ANN Code

PyTorch has its own data structures for machine learning operations. These data 
structures are called tensors.

We can construct a simple unscaled MLE loss function with
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ANN Code

We create our branch and trunk 
networks separately.

Branch

Trunk

We declare however many branch 
networks we would like. We change 
the number of outputs in the trunk 
network to correspond.
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ANN Code

It is difficult to divide our dataset into batches using DeepONets, based on the repetitive 
reconstruction of our input tensors, but this is not needed for datasets modest in size.



To demonstrate our convolution neural network, we 
consider the problem of learning the mapping

for Laplacian                              . 

In particular, we discretize                                    ,                                                         
and our input data is     and our target data is 
              . Our optimization problem in this particular 
instance becomes

for our CNN                               .
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Creating a CNN
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CNN Results

Test results
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CNN Code

Simple, shallow CNN 
with only two 
convolution layers with a 
moderate number of 
nodes.
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CNN Code

We can tune the hyperparameters such as number of epochs and learning 
rate as needed. Again, batches are unnecessary with modest amounts of 
data, although they are much easier to implement with this framework.



Suppose now we wanted to learn the PDE solution to an equation with a time operator as 
well, such as the one-dimensional heat equation
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The Basics of PINNs
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The Basics of PINNs

Physics-informed neural networks (PINNs) are a great mechanism to accomplish learning 
solutions of PDEs with a time derivative.

The key component to a PINN that differentiates it from an ANN is a modified loss function. A 
PINN loss takes the form

PyTorch differentiation methods can be used in the loss function, bypassing numerical 
methods. The remaining components of the ANN such as architecture are standard. The 
neural network       takes time and spatial parameters.     is an arbitrary differential operator.
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PyTorch Differentiation

A basic example using PyTorch to differentiate a discrete function is 
as follows:

First and 
second 
derivatives
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Designing PINN Loss

We use the following loss:



We can extend PINNs to more sophisticated PDEs, such as vorticity-form Navier-Stokes

and the viscous Burgers’ equation
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Alternative PDEs
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