Introduction to PyTorch with NNs,
CNNs, and PINNs

Andrew Gracyk - University of lllinois at Urbana-Champaign - DIGIMAT

Outline

/ In this presentation, we discuss fundamentals of types \
of neural networks, and their constructions using

PyTorch, in the context of PDEs.

We discuss three types of neural networks: artificial
neural networks (ANNs), convolutional neural networks
(CNNs), and physics-informed neural networks
(PINNSs).

CNNs develop more sophisticated architecture. PINNs

\allow for more creative loss functions /

Presentation Purpose

The purpose of this presentation is not to introduce
particular models in machine learning, but rather to
teach how to actually code any model with PyTorch.

The examples we choose are specific, but can be
extended to any application.

A Reminder: Setting Up a Neural Network

The abstract goal of a neural network is to seek a function

[N:Xx@%y]

mapping a collection of input data X C X = R% x ... x R% to output Y C). We say the network is
parametrized by § € © . We find optimal parameter by minimizing a loss (cost) function

[e* — arg min L(N (X, 9),Y)]

0co

applied to a collection of training data.

A common loss function is MSE loss, which takes
the form 2 FZ

4
/

1?‘?‘0
X
A

No
)9,
\

/)
)

LN(X,0),Y) =7 |[[N(X0) Y|, <X

=1

Creating an ANN

In this example, we examine a simple neural network by mapping randomly generated input
functions to that in which its scaled second derivative operator is applied, meaning we learn
the (discrete) mapping from u to f* that adheres to the equation

Visu(a) = f(@) |

Creating an ANN

An effective architecture to deduce such a mapping is to first learn

B:(u(zy),u(xy), .. .u(xy))’ = bp(ulzy), u(zy), ... u(z,)) €R

with p neural networks, where z1,...,z, € 2 C [a, b] belong to the mesh in which the
function is evaluated. A second neural network learns

T y— (tl(y)>t2(y)7 see 7tp(y))T

These neural networks are called branch and trunk neural networks respectively. Here,
Y is the point where we are finding the function with the operator applied. Our final output
is given by

M'vs

Dlul(y) = > br(u(z1), u(z2), ..., u(zn))te(y)

k=1

This framework, known as a Stacked DeepONet, is very effective for our problem.

ANN Results

[Training results]

\}
5.0

~—~
& 25
~— 0.0
3 -2.5
§ -5.0
e

-7.5

1 |
A& N o N & O o

-10.0

[Test results]

1.5

1.04

0.5

0.0

—0.5

-1.04

-1.54

-2.01

L
W N B O B N W A U

ANN Code

PyTorch has its own data structures for machine learning operations. These data
structures are called tensors.

We can construct a simple unscaled MLE loss function with

Define MSE loss

def MSE_loss(u, f):
loss = torch.sum((u-f)**2)
return loss;

loss_func = MSE_loss

ANN Code

Create neural networks for Stacked DeepONet

class Stacked_Branch(nn.Module): We create our branch and trunk
def _ init_ (self):
super(Stacked_Branch, self)._ _init_ () netWOI’kS Separately.

self.layerl = nn.Linear(N, 300, bias=True)
self.layer2 = nn.Linear(300,1, bias=True)

self.activation = nn.RelLU() %

def forward(self, x):

out = self.layerl(x) % Branch
out = self.activation(out)

out = self.layer2(out)
return out

class Trunk(nn.Module):
def _ init_ (self):
super(Trunk, self). init_ () Trunk
self.layerl = nn.Linear(1l, 300, bias=True) %

self.layer2 = nn.Linear(300,2) %
self.activation = nn.RelLU()

def forward(self, x):

out = self.layer1(x) We declare however many branch
ZE: : 221;:?:;::;:;3:50‘“:) networks we would like. We Change
return out the number of outputs in the trunk

network to correspond.

Stacked_Branch_1 = Stacked_Branch()

Stacked_Branch_2
Trunk = Trunk()

Stacked_Branch()

ANN Code

Iteratively run this code to train NNs
num_epochs = 1000

loss_vector = np.zeros(shape=(num_epochs,1))
index_vector = np.zeros(shape=(num_epochs,1))
target = z_NN_target

for i in np.arange(©,num_epochs):

optimizer_1 = optim.Adam(Stacked_Branch_1.parameters(), 1r=0.00001); optimizer_1.zero_grad()
optimizer_2 = optim.Adam(Stacked_Branch_2.parameters(), 1lr=0.00001); optimizer_2.zero_grad()
optimizer_3 = optim.Adam(Trunk.parameters(), 1lr=0.00001); optimizer_3.zero_grad()

output_1 = Stacked_Branch_1(z_NN_input_branch);
output_2 = Stacked_Branch_2(z_NN_input_branch)
output_3 = Trunk(z_NN_input_trunk)

loss = loss_func(target, torch.mul(output_1, output_3[:,0:1]) + torch.mul(output_2, output_3[:,1:2]))
loss.backward()

loss_vector[i-1] = loss.detach()

optimizer_1.step(); optimizer_2.step()

optimizer_3.step()

print("DNN training finished.")
print(loss_vector[num_epochs-1])

It is difficult to divide our dataset into batches using DeepONets, based on the repetitive
reconstruction of our input tensors, but this is not needed for datasets modest in size.

Creating a CNN

To demonstrate our convolution neural network, we
consider the problem of learning the mapping

Au=f, u(z,y) = f(z,y)

92 93

Ox? oy’

In particular, we discretize Q2 C [—m, 7| X [—7, 7],
and our input data is « and our target data is

Au = f. Our optimization problem in this particular
instance becomes

for Laplacian A =

0" = argmin L(C(u,), f)
HcoO

forourCNN C: U x © — F .

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

CNN Results

[Test results

0
0.02 075
2 050
4 a0 025
6 — 0.00
-0.25
8
-0.01 -0.50
10 -0.75
-0.02
12 -1.00
0
003 075
2 0.02 050
4 001 025
6 0.00 0.00
8 -0.01 -0.25
10 -0.02 -0.50
-0.75
12 -0.03
0 2 4 6 8 10 12

Andrew Gracyk - University of lllinois at Urbana-Champaign - DIGIMAT

CNN Code

class CNN(nn
def

def

CNN = CNN()

Create CNN

.Module):

__init_ (self):

super(CNN, self). init ()

self.convl = nn.Conv2d(1, 200, 3, padding=(1,1))
self.conv2 = nn.Conv2d(200, 1, 3, padding=(1,1))
self.activation = nn.RelLU()

forward(self, x):

x = self.convl(x)

x = self.activation(x)
x = self.conv2(x)
return x

/Simple, shallow CNN)

with only two

convolution layers with a

moderate number of
nodes.

J

CNN Code

Iteratively run this code to train the network
num_epochs = 1000

loss_vector = np.zeros(shape=(num_epochs,1))
target = z_target
for i in np.arange(9,num_epochs):

optimizer_1 = optim.Adam(CNN.parameters(), 1lr=0.001); optimizer_1.zero_grad()
output = CNN(z_tensor)

loss = loss_func(target, output)
loss.backward()

loss_vector[i-1] = loss.detach()
optimizer_1.step()

print("DNN training finished.")
print(loss_vector[num_epochs-1])

We can tune the hyperparameters such as number of epochs and learning
rate as needed. Again, batches are unnecessary with modest amounts of
data, although they are much easier to implement with this framework.

The Basics of PINNs

|

Suppose now we wanted to learn the PDE solution to an equation with a time operator as
well, such as the one-dimensional heat equation

|

(Ou(x,t) . O%u(x,t) 5
ot VT aaz

q u(z,0) = ug

\u<x7 t)|33€F — f 8

2.5 5 7.5 10

The Basics of PINNs

/Physics-informed neural networks (PINNs) are a great mechanism to accomplish learning)
solutions of PDEs with a time derivative.

The key component to a PINN that differentiates it from an ANN is a modified loss function. A
PINN loss takes the form
/

LIN(X,t,0),u0, f) = 7110 + DIN (-, 0)||L22x (0,1))
+ Yal|lug — N (+,0,0)||L2 ()

+ 73Hf - N(SC, K Q)HLQ(FX(O,T))
\ J

PyTorch differentiation methods can be used in the loss function, bypassing numerical
methods. The remaining components of the ANN such as architecture are standard. The
neural network N takes time and spatial parameters. D is an arbitrary differential operator.

PyTorch Differentiation

r

A basic example using PyTorch to differentiate a discrete function is
as follows:

.

Define Llocations
x = torch.tensor([[1.], [2.], [3.]], requires_grad=True)

Define a function

2 = x*43 First and
print(z) - Second

z_x = torch.autograd.grad(z.sum(), x, create_graph=True)[0] 4—— . .

z_xx = torch.autograd.grad(z_x.sum(), x, create_graph=True)[0] (jEEFI\/EitI\IGBSS
print(z_x)

print(z_xx)

tensor([[1.],

[8.1,

[27.]1], grad_fn=<PowBackwardo>)
tensor([[3.],

[12.],

[27.]], grad_fn=<MulBackwardo>)
tensor([[6.],

[12.],

[18.]], grad_fn=<MulBackwarde>)

Designing PINN Loss

def PINN_loss(x, t, NN, u_@, f, D):
u = NN(x,t)
u_x = torch.autograd.grad(u.sum(), x, create_graph=True)[©@]
u_xx = torch.autograd.grad(u_x.sum(), x, create_graph=True)[0]
u_t = torch.autograd.grad(u.sum(), t, create_graph=True)[0]

loss = torch.sum((u_t - D*u_xx)**2)
return(loss)

We use the following loss:

LN (x,t,0),uq, f H FN

ZU 7 0) — Vw(x,t,e)‘

L2(Qx[0,T))

Alternative PDEs

We can extend PINNs to more sophisticated PDEs, such as vorticity-form Navier-Stokes

Orw(x,t) +u(z,t) - Vw(z,t) = vAw(z,t) + f(z), =€ Q,t € (0,T]
V-u(x,t) =0, zete (0,7T)

w(z,0) = wy z €

and the viscous Burgers’ equation [&u + u0,u = vOzu, x € Q,te (0, T]]

References

e Lu L, Jin, P, Pang, G, Zhang, Z., & Karniadakis, G.E. Learning Nonlinear Operators
via DeepONet Based on the Universal Approximation Theorem of Operators. In Nature
Machine Intelligence. https://www.nature.com/articles/s42256-021-00302-5.

e Raissi, M., Perdikaris, P., Karniadakis, G.E. Physics Informed Deep Learning (Part I):
Data-driven Solutions of Nonlinear Partial Differential Equations.
https://arxiv.org/abs/1711.10561.

e Lorin, E., Yang, X. Schwarz Waveform Relaxation Physics-Informed Neural Networks
for Solving Advection-Diffusion-Reaction Equations. https://arxiv.org/abs/2111.02559.

https://www.nature.com/articles/s42256-021-00302-5
https://arxiv.org/abs/1711.10561
https://arxiv.org/abs/2111.02559

